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REALIZATION OF HOLClNOMY IN THE MOTION OF MECHANISMS* 

M-0. RAKRULA 

A relationship between the modern theory of CoMectedness and the mechanics 
of non-holonomic systems is established by two examples. 

The idea of connectedness is the following. A differential equation y' = f (I. y) is con- 
sideredas afielddirections in the +y plane, while the system of differential equations 

aua/aUi = - ria (u), t = 1, 2, . . . . n; e = n + i, . . ., n + r 

with right sides dependent on both the independent variables u*(basis coordinates) and on the 
unknown functions ua(laminary coordinates) in the general case, or equivalently, the Pfaff 
system dua+ J?ia dv' = O,, is considered as a field of n-dimensional areas in the space of all 
variables (~4, u"). The connectedness in the stratification x: v,- V is the assignment of a 
horizontal distribution Ah inthemanifold V,, i.e., that field of areas which the tangential 
stratification TV /l/ covers in the tangential mapping Tn. Critical for connectedness is 
the intersection of layers along paths given on the base V, and particularly the transformation 
of layers in the traversal of closed cylces, i.e., that which is called holonomy. 

Two problems from the theory of mechanisms are considered below, which could be models to 
describe motions with non-holonomic constraints and reveal the value of holonomy in practical 
problems. The first problem illustrates the occurrence of connectedness and holonomy in an 
ordinary stratification, while the second demonstrates these concepts in a more complex double 
stratification. The multiple stratifications are not here assumed to be vectorial /2/. Such 
generality turns out to be more productive. 

Problem 1. A certain curve p(t) is given on a plane (Fig.1). It is 
required to find the curve 

P 
r(t) in this same plane for which the length of 

a tangent segment from the point of tangency M to the point of intersection 

P 

g 

P with the curve p(t) is a constant, and describes the trajectory of the 
point M as.a function of the shape of the curve p(t). 

"0 
r 

M 
Let (u,u) and (r,y) be the coordinates of the points P and M. The rod 

PM is identified with the point (u,u,I, y) of the four-space Rd. The mapping 
x:PM-P projects R' onto R' stratifying R' into two-dimensional layers. 
The coordinates (u,v) become basis coordinated, and (t,y) become laminary. 

Fig.1 The Point P belongs to the base, and the point M to the layer n-r(P). The 
Qconditions 

1) drljr-pp, 2) Ir--[=a-coast are equivalent to the Pfaff system 

a*dr = (z - U) 0, a*dy = (y - v) 8 (0 = (z - Y) du + (y - u) dv) 

governing the two-dimensional distribution Ax in Rd. The vector fields 

xl=-g;;yz, XI= &+Tz 
(z+ - u) & + (Y - u) 3 

comprise the basis for A,,. Together with the operators X, = Bat, X,a alay, the fields X,and X, 
form an adapted basis (/l/, p.169). The distribituion Ahis not integrable, i.e., 

[X,X,1 = -a-a ((y - v) x, - (z - u) X,) 

The connections characterizing the motion of the rod PM are non-holonomic (/3/, p.46). The 
vector field [X,X,] is an operator of the holonomy group; its trajectories are concentric 
circles in each layer n-l(P). A new layer over P can be extracted and taken by fixing 0 in 
one of these circles in n-l(P). Performing such a fixing in each layer , we obtain a stratifica- 
tion of the holonomy /4/ o= necp :Ra-+R= with the reducing mapping 

cp : (4 v, T) - (u, “, z, y), I = Y + a cog z’, y = ” + 0 sin r 

In the stratification of the holonomy the two Pfaff equations are replaced by one 

odr = sin rdu - eosrdv. 

In place of the distribution Ah there is the distribution A,,', also two-dimensional, with the 
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vector basis 

The fields Y, and Y,are v-connected with the fields X,and X,: TcpYk = Xe, k= 1,2. The bracket 
[Y,YJ = a-sah is q-connected to the bracket [X,X,]. Therefore, the point Pin the stratification 
of the holonomy is a point of the base, its trajectory on the plane uu is a path on the base, 
the layer o-l(P) is a circle of radius 0 with centre P, the layer above the path is a one- 
parameter family of circles, and the lifts are orthogonal trajectories of this family (Fig.2). 
If the path on the base is a straight line, then the lifts are ordinary tractrices. 

Fig.2 Fig.3 

The dashed lines in Fig.3 display the lifts of paths having the form of a circle. The 
initial position of the rod PM and its new location PM' on completion of counter-clockwise 
traversal of the circle by the point P are shown. Rotation of the circle M-M' is indeed 
a manifestation of holonomy. It is clear that such a rotation of the circle 6’(P) isobserved 
when the point P traverses any closed cycle. This fact underlines the construction of the 
planimeter /5/. 

Among such problems is a large number of problems of control theory, particularly pursuit 
games when the motion of one point (z,y....) depends on the behaviour of another point (u,~',...) 
and the nature of the connection is described by a Pfaff system. 

It should be noted that holonomy is always observed in the appearance of vector field 
brackets. For instance, if there are vector fields X=&lauL and Y = y'alau', then R* can be 
supplemented by two times axes t and s andthe vector fields X' = d/at + X and Y' =t a/as + Y in 
the stratification R”+*+ Rn, (d, t, s)-(ui) being formed, will form a connectedness with the 
bracket [X'Y']=(XY] as holonomy group operator. 

In particular, the gyroscope effect, i.e. two rotations in R9 around the r and y axes 
governed by the vector fields X = dlay - ydlaz and Y = zalat - zdlaz generate a third rotation 
around the z axis by interacting [xvi = -ya/az+ za/ay, is a manifestation of holonomy. 

We intestigate how holonomy appears in the double stratification situation defined by 
the commutativediagramdisplayed in Fig.4 where the arrows $,n,, pl, &are assumed submersions. 

Fig.4 Fig.5 

Problem 2. There is a rhombus PM,M,M in space whose sides are hinge-connected at the 
vertices (Fig.5). The points I', M, and M, move in a certain plane, where the points M,and 11, 
follow the point P according to the condition in Problem 1. Describe the motion of the point 
M when it is known that the tangent to its trajectory lies in the .M,M,M plane. 

We first introduce the coordinates of the vertices: P (u, @. M, (q, 1/,)> M, (I,. Y,), lbf (~1 Y, 2) and 
we define the projections 

PM,M,‘zI 2 PM? .c+ P, PM,M,M z Phf,% P. 

The manifold V,, is nine-dimensional, the manifolds V, and V, are four-dimensional, and 
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the base V is two-dimensional. By analogy with Problem 1, the mapping 

CF : (u, (i, 73, T,, T) _ (u, U! q, Y1. .% Y*, 2, Y, 2) 

where . 

~1; = u + (1 COSTS, yk = u $ D sin ok; k = 1, 2 

*zu+ a (COS ‘II + cos 5.) cos* -$ 

g = pi + a (sill 7, + sin 7.) WIG+ 

TX-T, 
z = (1CclS 2 sin z 

reduces the nine-space to five-dimensional, and reduces the conditions 

to the Pfaff system 

1) dr1 II rl - P, 2) dr? Ij rl - p, 3) (dr, r~ - p, r.! - p) = 0 
4)1~~-pp==I~-pp==r--_~I=)r-rr:l=a-cconst 

ad?,; = sinTkdu - cos tkdu; k = 1, 2 

~2 dr = sill T cos 9 cos 7 du + sin 
( 

r1-t Tz 71+ Tl 
7--do) 

The latter is not fully integrable, but allows of the first integral 

T, - z: 
sin 2 = Cl,+ (1) 

(C is an arbitrary constant) .Thisisexplained by the fact that while the distribution A, ex- 
teneded over the vector fields 

f( cos 71 

with the bracket [YIYs] = o-2(N&, + a/&,), is linearly independent of Y,and Y, and not integrable, 
the projections Ya' = Y - a/au and Y,'= Y,-_aiav on the three-dimensional layer 
'pppx,, form a linearly-dependent system with the bracket [Y,'Y,']=[Y,Y,] 

L+(P), D = 'pprx, = 

‘II _t T.2 
sin 7-Y; + cos %I + a 

- Y; - a cos 9 [Y;Y;] = 0 2 

To describe the motion of the point M we use the substitution x=z -lb,Y=y--,z=z 
to reduce (1) to the equation 

(xl+ Y'+ Z')S= 4o=(xa+ Y" - CS.??) 
or 

(XX + j+)B= 4&(x2-C+) ( (XI= x*+ r, y’== 2) 

The last equation defines a family of two-sheeted curves among which is lemniscate for C- 1. 
Rotating these curves around the Taxis, we obtain a family of surfaces of revolution with 
centre at the point P on which the three-dimensional layer 6'(P) is stratified. Depending 
on the initial values of the angles r1* T¶ and r the point M slides over one of these surfaces 
(Fig.6). Its trajectory on such a surface depends on the path described by the point P. When 
the point P traverses a closed cycles, the point M returns to the initial parallel but occu- 
pies anew position M'. Under the influence of holonomy each parallel is rotated through the 
angle M-M'. 

As is known /6/, connectedness can be defined by a v-tuple 
stratification in the general case. For a binary stratification 
it is determined by giving two distributions Ah1 and A,,' which 
are horizontal for the stratifications x1 and nP* respectively, 
on the total manifold V,,. In other words, if a vertical distribu- 
tion 

Au1 = Ker Tn,, Au2 = Ker Tn. Pl 

is also considered on V,,, then this is equivalent to determining 
Fig.6 a structure 

A @ A, 8 Ar @ A,2 
(A = AI: f-l Ah',, A, = Ah2 n Ao1, AZ== Ah1 n Av', AIS = A'" n A.'), 

on V,,,, that represents each space tangent to V1, in the form of the direct sum of its four 
subsapces, hence 

Al 8 Alo = Ker Tn,, A, $ Al, = Ker Tn,, 81 8 A2 $ A,, - Ker To, 

where o = p,n, = pz~, and A 8 A, and A @ Ar are projected on V,and V, for Tn, and Tnl, 
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defining connectedness in the stratifications f1 and p2. 
In the example under consideration, after reduction the manifold V,, is five-dimensional, 

the manifolds VI and V, are three-dimensional, and the base V is two-dimensional. The distribu- 
tion A extended over the vector fields Y,and Y,is two-dimensional and the distributions Al, A? 
and A,,,defined by the operators alan,aiaz, and al&, respectively, are one-dimensional. The 
three Pfaff equations presented above define the distribution A. The second and third of them 
define the distribution AI, and the first and third, the distribution As. 

1. 

2. 

3. 
4. 

5. 
6. 
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CONDITIONS FOR FINITENESS OF THE NUMBER OF INSTABILITY ZONES 
IN THE PROBLEM OF NORMAL VIBRATIONS OF NON-LINEAR SYSTEMS* 

A.L. ZHUPIEV and YU.V. MIKHLIN 

Conservative non-linear systems with two degrees of freedom that allow 
of normal vibrations with rectilinear trajectoriesinconflguration space 
areexamined. The normalvibrationsofnon-linear systems are ageneralization 
fornormal (principal) vibrationsoflinearsystems/l/. Thevalueofsuch 
solutions is determinedbythe factthatthe resonancemodes are close tonormal 
vibrations for small external periodic effects. 

A number of recent papers (/2--5/etc.) are devoted to the analysis 
of normal vibrations. Within the framework of the stability problem to 
a first approximation, or normal vibrations, conditions are obtained 
for which the number of instability zones in the system parameter space 
is finite. The eigenfunctions and eigenvalues corresponding to the zone 
boundaries are determined. 

1. Let the motion of a conservative system be determined by the equations 

Zi" + dII/dXi = 0 (i = i, 2) 

where II (zl, I*) is a positive-definite potential. 
We assume that the system allows normal vibrations I,= Czf(C is a constant) 

are described in /l, 3, 5/. Rotation of the coordinate axes can always result in 
in the form ts= 0, and a system potential in the form 

H(Il, 2‘) = 2 (lill‘ +zz'mg* ejzl'+ 5 z*'Pi (zI) 
i-2 bo i-3 

(1.1) 

Such systems 
a solution 

The condition for the existence of the solutions mentioned aH(z,.O)/dz,=O is satisfied 
identically. 

Motion in time along the normal vibrations trajectory is described by a second-order equa- 
tion 

z" + an (z, O)/& = 0, I ss z, (1.2) 

where the first integral (the energy integral) has the form 

~'~/2 + II (I, 0) = h (1.3) 
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